A Maximum Principle for Positive Elliptic Pseudo-differential Operators on Closed Riemannian Manifolds
نویسنده
چکیده
In this note we establish the positivity of Green’s functions for a class of elliptic differential operators on closed, Riemannian manifolds
منابع مشابه
On the Principal Eigenfunction of Positive Elliptic Differential Operators and the Prescription of Q-curvature on Closed Riemannian Manifolds
In this note we establish the large time limit non-negativity of the heat kernel for a class of elliptic differential operators on closed, Riemannian manifolds, and apply this result to a problem from conformal differential geometry.
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملThe Conformal Deformation Detour Complex for the Obstruction Tensor
On pseudo-Riemannian manifolds of even dimension n ≥ 4, with everywhere vanishing (Fefferman-Graham) obstruction tensor, we construct a complex of conformally invariant differential operators. The complex controls the infinitesimal deformations of obstruction-flat structures, and, in the case of Riemannian signature the complex is elliptic.
متن کاملHarnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds
We consider second-order linear elliptic operators of nondivergence type which is intrinsically defined on Riemannian manifolds. Cabré proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabré’s result and, as a consequence, we give another proof to Harnack inequality of Yau for positive harmonic functions on Riemannian ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کامل